GR 12 SEQUENCES AND SERIES PAST PAPERS

May /June 2024

QUESTION 2

- 2.1 Consider the geometric series: $4 + 2 + 1 + \frac{1}{2} + ...$
 - 2.1.1 Does this series converge? Justify your answer. (2)
 - 2.1.2 Calculate S_{∞} . (2)
- 2.2 Given: $\sum_{p=k}^{10} 3^{p-1} = 29$ 520. Calculate the value of k. (5)

QUESTION 3

- 3.1 Consider the quadratic number pattern: 3;7;12;...
 - 3.1.1 Show that the general term of this number pattern is given by $T_n = \frac{1}{2}n^2 + \frac{5}{2}n. \tag{3}$
 - 3.1.2 What number must be added to T_{n-1} so that $T_n = 13527$? (4)
- 3.2 Given an arithmetic sequence with $T_1 = 8$ and $T_2 = 11$.
 - 3.2.1 Calculate the value of n if $T_n = 41$. (3)
 - 3.2.2 A new arithmetic sequence P is formed using the term position and the term value of the given arithmetic sequence. For the new sequence, $P_8 = 1$, $P_{11} = 2$ and so forth.
 - (a) Write down the value of P_{41} . (1)
 - (b) Calculate the value of the first term of the new arithmetic sequence. (4) [15]

NOVENBER 2023

QUESTION 2

2.1 Given the arithmetic series: 7 + 12 + 17 + ...

2.1.1 Determine the value of
$$T_{91}$$
 (3)

2.1.2 Calculate
$$S_{91}$$
 (2)

2.1.3 Calculate the value of
$$n$$
 for which $T_n = 517$ (3)

2.2 The following information is given about a quadratic number pattern:

$$T_1 = 3$$
, $T_2 - T_1 = 9$ and $T_3 - T_2 = 21$

2.2.1 Show that
$$T_5 = 111$$
 (2)

2.2.2 Show that the general term of the quadratic pattern is
$$T_n = 6n^2 - 9n + 6$$
 (3)

2.2.3 Show that the pattern is increasing for all
$$n \in \mathbb{N}$$
. (3) [16]

QUESTION 3

- 3.1 Given the geometric series: 3+6+12+... to n terms.
 - 3.1.1 Write down the general term of this series. (1)

3.1.2 Calculate the value of
$$k$$
 such that: $\sum_{p=1}^{k} \frac{3}{2} (2)^p = 98301$ (4)

- 3.2 A geometric sequence and an arithmetic sequence have the same first term.
 - The common ratio of the geometric sequence is $\frac{1}{3}$
 - The common difference of the arithmetic sequence is 3
 - The sum of 22 terms of the arithmetic sequence is 734 more than the sum to infinity of the geometric sequence.

MAY /JUNE 2023

QUESTION 2

- 2.1 Given the geometric series: $\frac{1}{5} + \frac{1}{15} + \frac{1}{45} + \dots$
 - 2.1.1 Is this a convergent geometric series? Justify your answer with the necessary calculations. (2)
 - 2.1.2 Calculate the sum to infinity of this series. (2)
- 2.2 An arithmetic and a geometric sequence are combined to form the pattern, which is given by: $P_n = x$; $\frac{1}{3}$; 2x; $\frac{1}{9}$; 3x; $\frac{1}{27}$; ...
 - 2.2.1 Write down the next TWO terms of the pattern. (2)
 - 2.2.2 Determine the general term (T_n) for the odd terms of this pattern. Write down your answer in terms of x. (2)
 - 2.2.3 Calculate the value of P_{26} . (3)
 - 2.2.4 If $\sum_{n=1}^{21} P_n = 33.5$, determine the value of x. (6)

QUESTION 3

A quadratic sequence has the following properties:

- The second difference is 10.
- The first two terms are equal, i.e. $T_1 = T_2$.
- $T_1 + T_2 + T_3 = 28$
- 3.1 Show that the general term of the sequence is $T_n = 5n^2 15n + 16$. (6)
- 3.2 Is 216 a term in this sequence? Justify your answer with the necessary calculations. [9]

NOV 2022

QUESTION 2

- 2.1 The first term of a geometric series is 14 and the 6th term is 448.
 - 2.1.1 Calculate the value of the constant ratio, r. (2)
 - 2.1.2 Determine the number of consecutive terms that must be added to the first 6 terms of the series in order to obtain a sum of 114 674. (4)
 - 2.1.3 If the first term of another series is 448 and the 6th term is 14, calculate the sum to infinity of the new series. (3)
- 2.2 If $\sum_{p=0}^{k} \left(\frac{1}{3}p + \frac{1}{6}\right) = 20\frac{1}{6}$, determine the value of k. (5)

QUESTION 3

It is given that the general term of a quadratic number pattern is $T_n = n^2 + bn + 9$ and the first term of the first differences is 7.

- 3.1 Show that b = 4. (2)
- 3.2 Determine the value of the 60th term of this number pattern. (2)
- Determine the general term for the sequence of first differences of the quadratic number pattern. Write your answer in the form $T_p = mp + q$. (3)
- 3.4 Which TWO consecutive terms in the quadratic number pattern have a first difference of 157?
 (3)
 [10]

MAY /JUNE 2022

QUESTION 2

2.1 The first term of an arithmetic sequence is -1 and the 7^{th} term is 35.

Determine:

- 2.1.1 The common difference of the sequence (2)
- 2.1.2 The number of terms in the sequence if the last term of the sequence is 473 (3)
- 2.1.3 The sum of the first 40 terms in this sequence (2)
- 2.2 75; 53; 35; 21; ... is a quadratic number pattern.
 - 2.2.1 Write down the FIFTH term of the number pattern. (1)
 - 2.2.2 Determine the n^{th} term of the number pattern. (4)
 - 2.2.3 Determine the maximum value of the following number pattern:

$$-15; -\frac{53}{5}; -7; -\frac{21}{5}; \dots$$
 (4)